skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pasham, D_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The tidal disruption event (TDE) AT2022cmc represents the fourth known example of a relativistic jet produced by the tidal disruption of a stray star, providing a unique probe of the formation and evolution of relativistic jets in otherwise dormant supermassive black holes (SMBHs). Here we present deep, late-time Chandra observations of AT2022cmc extending totobs≈ 400 days after disruption. Our observations reveal a sudden decrease in the X-ray brightness by a factor of ≳14 over a factor of ≈2.3 in time, and a deviation from the earlier power-law decline with a steepeningα≳ 3.2 (FX∝t−α), steeper than expected for a jet break, and pointing to the cessation of jet activity attobs≈ 215 days. Such a transition has been observed in two previous TDEs (Swift J1644+57 and Swift J2058+05). From the X-ray luminosity and the timescale of jet shut-off, we parameterize the mass of the SMBH in terms of unknown jet efficiency and accreted mass fraction parameters. Motivated by the disk–jet connection in active galactic nuclei, we favor black hole masses ≲105M(where the jet and disk luminosities are comparable), and disfavor larger black holes (in which extremely powerful jets are required to outshine their accretion disks). We additionally estimate a total accreted mass of ≈0.1M. Applying the same formalism to Swift J1644+57 and Swift J2058+05, we favor comparable black hole masses for these TDEs of ≲ a few × 105M, and suggest that jetted TDEs may preferentially form from lower-mass black holes when compared to nonrelativistic events, owing to generally lower jet and higher disk efficiencies at higher black hole masses. 
    more » « less
  2. Abstract In the past 5 yr, six X-ray quasi-periodic eruption (QPE) sources have been discovered in the nuclei of nearby galaxies. Their origin remains an open question. We present Multi Unit Spectroscopic Explorer integral field spectroscopy of five QPE host galaxies to characterize their properties. We find that 3/5 galaxies host extended emission-line regions (EELRs) up to 10 kpc in size. The EELRs are photoionized by a nonstellar continuum, but the current nuclear luminosity is insufficient to power the observed emission lines. The EELRs are decoupled from the stars both kinematically and in projected sky position, and the low velocities and velocity dispersions (<100 km s−1and ≲75 km s−1, respectively) are inconsistent with being driven by active galactic nuclei (AGNs) or shocks. The origin of the EELRs is likely a previous phase of nuclear activity. QPE host galaxies share several similarities with tidal disruption event (TDE) hosts, including an overrepresentation of galaxies with strong Balmer absorption and little ongoing star formation, as well as a preference for a short-lived (the typical EELR lifetime is ∼15,000 yr), gas-rich phase where the nucleus has recently faded significantly. This suggests that QPEs and TDEs may share a common formation channel, disfavoring AGN accretion disk instabilities as the origin of QPEs. If QPEs are related to extreme mass ratio inspiral systems (EMRIs), e.g., stellar-mass objects on bound orbits about massive black holes, the high incidence of EELRs and recently faded nuclei could be used to localize the hosts of EMRIs discovered by low-frequency gravitational-wave observatories. 
    more » « less